Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Vaccine ; 40(21): 2960-2969, 2022 05 09.
Article in English | MEDLINE | ID: covidwho-1773836

ABSTRACT

The enhanced transmissibility and immune evasion associated with emerging SARS-CoV-2 variants demands the development of next-generation vaccines capable of inducing superior protection amid a shifting pandemic landscape. Since a portion of the global population harbors some level of immunity from vaccines based on the original Wuhan-Hu-1 SARS-CoV-2 sequence or natural infection, an important question going forward is whether this immunity can be boosted by next-generation vaccines that target emerging variants while simultaneously maintaining long-term protection against existing strains. Here, we evaluated the immunogenicity of INO-4800, our synthetic DNA vaccine candidate for COVID-19 currently in clinical evaluation, and INO-4802, a next-generation DNA vaccine designed to broadly target emerging SARS-CoV-2 variants, as booster vaccines in nonhuman primates. Rhesus macaques primed over one year prior with the first-generation INO-4800 vaccine were boosted with either INO-4800 or INO-4802 in homologous or heterologous prime-boost regimens. Both boosting schedules led to an expansion of T cells and antibody responses which were characterized by improved neutralizing and ACE2 blocking activity across wild-type SARS-CoV-2 as well as multiple variants of concern. These data illustrate the durability of immunity following vaccination with INO-4800 and additionally support the use of either INO-4800 or INO-4802 in prime-boost regimens.


Subject(s)
COVID-19 , Vaccines, DNA , Viral Vaccines , Animals , Antibody Formation , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Macaca mulatta , Mice , Mice, Inbred BALB C , SARS-CoV-2 , Vaccination
2.
Open forum infectious diseases ; 8(Suppl 1):387-388, 2021.
Article in English | EuropePMC | ID: covidwho-1564905

ABSTRACT

Background DNA vaccines are safe, tolerable, elicit humoral and cellular responses, allow for repeated dosing over time, are thermostable at room temperature, and are easy to manufacture. We present a compilation of Phase 1 and Phase 2 data of Inovio’s US COVID-19 DNA Vaccine (INO-4800) targeting the full-length Spike antigen of SARS-CoV-2. A South Korean Phase 2 study is ongoing. Methods Participants in the open-label Phase 1 trial received 0.5 mg, 1.0 mg or 2.0 mg intradermally (ID) followed by electroporation (EP) at Days 0 and 28. An optional booster dose was administered >6 months post-dose 2. The Phase 2 further compared the 1.0 mg and 2.0 mg doses against placebo in a total of 401 participants randomized at a 3:3:1:1 ratio. ClinicalTrials.gov identifiers: NCT04336410 and NCT04642638 Results The majority of adverse events (AEs) related to INO-4800 across both trials were mild in severity and did not increase in frequency with age and subsequent doses. In Phase 1, 78% (14/18) and 84% (16/19) of subjects generated neutralizing antibody responses with geometric mean titers (GMTs) of 17.4 (95%CI 8.3, 36.5) and 62.3 (95% CI 36.4, 106.7) in the 1.0 and 2.0 groups, respectively (Figure 1). By week 8, 74% (14/19) and 100% (19/19) subjects generated T cell responses by Th1- associated IFNγ ELISPOT assay . Following a booster dose, neutralizing GMTs rose to 82.2 (95% CI 38.2, 176.9) and 124.7 (95% CI 62.8, 247.7) in the 1.0 mg and 2.0 mg groups, respectively, demonstrating the ability of INO-4800 to boost (Figure 2). In Phase 2, neutralizing antibody responses demonstrated GMTs of 93.6 (95%CI 77.3, 113.4) in the 1.0 mg dose group and 150.6 (95%CI 123.8, 183.1) in the 2.0 mg dose group (Figure 3). Conclusion INO-4800 appears safe and tolerable as a primary series and as a booster with the induction of both humoral and cellular immune responses. In addition to eliciting neutralizing antibodies, INO-4800 also induced T cell immune responses as demonstrated by IFNγ ELISpot. Finally, as a homologous booster, INO-4800, when administered 6-10.5 months following the primary series, resulted in an increased immune response without increase in reactogenicity. The 2.0 mg dose was selected for Phase 3 evaluation. Disclosures Joseph Agnes, PhD, Inovio (Employee, Shareholder) Mary Giffear, BS, Inovio Pharmaceuticals, Inc. (Employee) Kimberly A. Kraynyak, PhD, Inovio Pharmaceuticals (Employee, Other Financial or Material Support, Stock options) Dinah Amante, BS, Inovio (Employee) Emma Reuschel, PhD, Inovio Pharmaceuticals (Employee) Aaron Christensen-Quick, PhD, Inovio Pharmaceuticals, Inc (Employee) Viviane M. Andrade, PhD, Inovio Pharmaceuticals Inc. (Employee) Gabriella Garufi, PhD, Inovio Pharmaceuticals, Inc. (Employee) Albert Sylvester, MS, Inovio (Employee, Shareholder) Matthew P. Morrow, PhD, Inovio Pharmaceuticals (Employee) Patrick P. Pezzoli, BS, Inovio Pharmaceuticals, Inc. (Employee) Jan Pawlicki, PhD, Inovio Pharmaceuticals (Employee) Elisabeth Gillespie, PhD, Inovio Pharmaceuticals, Inc. (Employee) Katherine Schultheis, MSc, Inovio Pharmaceuticals (Employee) Hedieh Badie, PhD, INOVIO Pharmaceuticals (Employee) Timothy A. Herring, MPH, Inovio Pharmaceuticals, Inc. (Employee, Other Financial or Material Support, Own stock in the company) Keiko O. Simon, PhD, Inovio Pharmaceuticals (Employee) Trevor R. F. Smith, PhD, Inovio (Employee, Shareholder) Stephanie Ramos, PhD, Inovio Pharmaceuticals (Employee) Jessica Lee, MPH, Inovio Pharmaceuticals (Employee) Michael Dallas, PhD, Inovio Pharmaceuticals, Inc. (Employee, Shareholder) Ami Shah Brown, PhD, Abbot Laboratories (Shareholder)IBB Biotech ETF (Shareholder)Inovio Pharmaceuticals (Employee)J & J (Shareholder)Moderna (Shareholder) Jacqueline E. Shea, PhD, Inovio Pharmaceuticals (Employee, Shareholder) J Joseph Kim, PhD, Inovio (Employee) David Weiner, PhD, Inovio (Board Member, Grant/Research Support, Shareholder, I serve on the SAB in addition to the above activities) Kate Broderick, PhD, Inovio (Employee) Trevor Mc ullan, MSc, Inovio (Shareholder) Jean Boyer, PhD, Inovio (Employee) Laurent Humeau, PhD, Inovio Pharmaceuticals (Employee) Mammen P. Mammen Jr., MD, Inovio Pharmaceuticals (Employee)

3.
Cell Rep Med ; 2(10): 100420, 2021 10 19.
Article in English | MEDLINE | ID: covidwho-1450242

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by the SARS-CoV-2 virus, has had a dramatic global impact on public health and social and economic infrastructures. Here, we assess the immunogenicity and anamnestic protective efficacy in rhesus macaques of an intradermal (i.d.)-delivered SARS-CoV-2 spike DNA vaccine, INO-4800, currently being evaluated in clinical trials. Vaccination with INO-4800 induced T cell responses and induced spike antigen and RBD binding antibodies with ADCP and ADCD activity. Sera from the animals neutralized both the D614 and G614 SARS-CoV-2 pseudotype viruses. Several months after vaccination, animals were challenged with SARS-CoV-2 resulting in rapid recall of anti-SARS-CoV-2 spike protein T cell and neutralizing antibody responses. These responses were associated with lower viral loads in the lung. These studies support the immune impact of INO-4800 for inducing both humoral and cellular arms of the adaptive immune system, which are likely important for providing durable protection against COVID-19 disease.


Subject(s)
Antibodies, Viral/blood , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Lung/virology , T-Lymphocytes/immunology , Animals , Antibodies, Neutralizing/blood , COVID-19 Vaccines/therapeutic use , Female , Injections, Intradermal , Macaca mulatta , Male , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/immunology , Vaccines, DNA/administration & dosage , Vaccines, DNA/therapeutic use , Viral Load
4.
ACS Pharmacol Transl Sci ; 4(4): 1349-1361, 2021 Aug 13.
Article in English | MEDLINE | ID: covidwho-1358338

ABSTRACT

Coronavirus disease 2019 (COVID-19) is caused by the newly emerged human coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Due to the highly contagious nature of SARS-CoV-2, it has infected more than 137 million individuals and caused more than 2.9 million deaths globally as of April 13, 2021. There is an urgent need to develop effective novel therapeutic strategies to treat or prevent this infection. Toward this goal, we focused on the development of monoclonal antibodies (mAbs) directed against the SARS-CoV-2 spike glycoprotein (SARS-CoV-2 Spike) present on the surface of virus particles as well as virus-infected cells. We isolated anti-SARS-CoV-2 Spike mAbs from animals immunized with a DNA vaccine. We then selected a highly potent set of mAbs against SARS-CoV-2 Spike protein and evaluated each candidate for their expression, target binding affinity, and neutralization potential using complementary ACE2-blocking and pseudovirus neutralization assays. We identified a total of 10 antibodies, which specifically and strongly bound to SARS-CoV-2 Spike, blocked the receptor binding domain (RBD) and angiotensin-converting enzyme 2 (ACE2) interaction, and neutralized SARS-CoV-2. Furthermore, the glycomic profile of the antibodies suggested that they have high Fc-mediated effector functions. These antibodies should be further investigated for elucidating the neutralizing epitopes on Spike for the design of next-generation vaccines and for their potential in diagnostic as well as therapeutic utilities against SARS-CoV-2.

5.
JCI Insight ; 6(10)2021 05 24.
Article in English | MEDLINE | ID: covidwho-1197299

ABSTRACT

Emerging coronaviruses from zoonotic reservoirs, including severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), have been associated with human-to-human transmission and significant morbidity and mortality. Here, we study both intradermal and intramuscular 2-dose delivery regimens of an advanced synthetic DNA vaccine candidate encoding a full-length MERS-CoV spike (S) protein, which induced potent binding and neutralizing antibodies as well as cellular immune responses in rhesus macaques. In a MERS-CoV challenge, all immunized rhesus macaques exhibited reduced clinical symptoms, lowered viral lung load, and decreased severity of pathological signs of disease compared with controls. Intradermal vaccination was dose sparing and more effective in this model at protecting animals from disease. The data support the further study of this vaccine for preventing MERS-CoV infection and transmission, including investigation of such vaccines and simplified delivery routes against emerging coronaviruses.


Subject(s)
Coronavirus Infections/veterinary , Macaca mulatta/immunology , Middle East Respiratory Syndrome Coronavirus/immunology , Vaccines, DNA/therapeutic use , Viral Vaccines/therapeutic use , Animals , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Immunogenicity, Vaccine , Injections, Intradermal , Middle East Respiratory Syndrome Coronavirus/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vaccines, DNA/administration & dosage , Vaccines, DNA/genetics , Viral Vaccines/administration & dosage , Viral Vaccines/genetics
6.
EClinicalMedicine ; 31: 100689, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-987565

ABSTRACT

BACKGROUND: A vaccine against SARS-CoV-2 is of high urgency. Here the safety and immunogenicity induced by a DNA vaccine (INO-4800) targeting the full length spike antigen of SARS-CoV-2 are described. METHODS: INO-4800 was evaluated in two groups of 20 participants, receiving either 1.0 mg or 2.0 mg of vaccine intradermally followed by CELLECTRA® EP at 0 and 4 weeks. Thirty-nine subjects completed both doses; one subject in the 2.0 mg group discontinued trial participation prior to receiving the second dose. ClinicalTrials.gov identifier: NCT04336410. FINDINGS: The median age was 34.5, 55% (22/40) were men and 82.5% (33/40) white. Through week 8, only 6 related Grade 1 adverse events in 5 subjects were observed. None of these increased in frequency with the second administration. No serious adverse events were reported. All 38 subjects evaluable for immunogenicity had cellular and/or humoral immune responses following the second dose of INO-4800. By week 6, 95% (36/38) of the participants seroconverted based on their responses by generating binding (ELISA) and/or neutralizing antibodies (PRNT IC50), with responder geometric mean binding antibody titers of 655.5 [95% CI (255.6, 1681.0)] and 994.2 [95% CI (395.3, 2500.3)] in the 1.0 mg and 2.0 mg groups, respectively. For neutralizing antibody, 78% (14/18) and 84% (16/19) generated a response with corresponding geometric mean titers of 102.3 [95% CI (37.4, 280.3)] and 63.5 [95% CI (39.6, 101.8)], in the respective groups. By week 8, 74% (14/19) and 100% (19/19) of subjects generated T cell responses by IFN-É£ ELISpot assay with the median SFU per 106 PBMC of 46 [95% CI (21.1, 142.2)] and 71 [95% CI (32.2, 194.4)] in the 1.0 mg and 2.0 mg groups, respectively. Flow cytometry demonstrated a T cell response, dominated by CD8+ T cells co-producing IFN-É£ and TNF-α, without increase in IL-4. INTERPRETATION: INO-4800 demonstrated excellent safety and tolerability and was immunogenic in 100% (38/38) of the vaccinated subjects by eliciting either or both humoral or cellular immune responses. FUNDING: Coalition for Epidemic Preparedness Innovations (CEPI).

SELECTION OF CITATIONS
SEARCH DETAIL